In order to determine the Young's Modulus of a wire of radius $0.2\, cm$ (measured using a scale of least count $=0.001\, cm )$ and length $1 \,m$ (measured using a scale of least count $=1\, mm$ ), a weight of mass $1\, kg$ (measured using a scale of least count $=1 \,g$ ) was hanged to get the elongation of $0.5\, cm$ (measured using a scale of least count $0.001\, cm$ ). What will be the fractional error in the value of Young's Modulus determined by this experiment? (in $\%$)
$0.14$
$0.9$
$9$
$1.4$
The percentage error in the measurement of $g$ is $.....\%$ (Given that $g =\frac{4 \pi^2 L }{ T ^2}, L =(10 \pm 0.1)\,cm$, $T =(100 \pm 1)\,s )$
Error in the measurement of radius of a sphere is $0.2\%$. The error in the calculated value of its volume is ......... $\%$
Explain Absolute Error, Relative Error and Percentage Error.
Two clocks are being tested against a standard clock located in a national laboratory. At $12: 00: 00$ noon by the standard clock, the readings of the two clocks are
$\begin{array}{ccc} & \text {Clock} 1 & \text {Clock} 2 \\ \text { Monday } & 12: 00: 05 & 10: 15: 06 \\ \text { Tuesday } & 12: 01: 15 & 10: 14: 59 \\ \text { Wednesday } & 11: 59: 08 & 10: 15: 18 \\ \text { Thursday } & 12: 01: 50 & 10: 15: 07 \\ \text { Friday } & 11: 59: 15 & 10: 14: 53 \\ \text { Saturday } & 12: 01: 30 & 10: 15: 24 \\ \text { Sunday } & 12: 01: 19 & 10: 15: 11\end{array}$
If you are doing an experiment that requires precision time interval measurements, which of the two clocks will you prefer?
The period of oscillation of a simple pendulum is given by $T = 2\pi \sqrt {\frac{l}{g}} $ where $l$ is about $100 \,cm$ and is known to have $1\,mm$ accuracy. The period is about $2\,s$. The time of $100$ oscillations is measured by a stop watch of least count $0.1\, s$. The percentage error in $g$ is ......... $\%$